

Development, Verification and Validation of a Test Method for Pyrrhotite in Concrete

PI: Kay Wille Associate Professor, Director of ACMC lab

PI: Maria Chrysochoou Associate Professor and Department Head Department of Civil & Environmental Engineering

Co-PI: Jim Mahoney Director, Connecticut Transportation Institute

Concrete affected by pyrrhotite containing aggregates

Deterioration of Concrete

Investigating the Deterioration of Basement Walls made of concrete in CT - PAST UCONN UNIVERSITY OF CONNECTICUT

Nov 2015 – August 2016

Attorney General Office

Department of Consumer Protection

Deterioration of Concrete

Goal: Develop a rapid and cost-effective test method

For what: Identify and quantify the presence of pyrrhotite in concrete (challenging)

Why: No test standard with known accuracy and precision exists

How:

- Prepare standard specimens with known pyrrhotite content AND obtain various field specimens
- Investigate sample volume and preparation requirements (how much sample do I need to make sure it represents the whole foundation)
- Apply a host of methods to both sample types and determine which combination has optimum performance in terms of
 - ✓ Accuracy
 - ✓ Speed
 - ✓ Cost

Methods for pyrrhotite analysis

• Sulfate (SO_4^{2-})

gypsum (cement) / limestone (aggregates)

Sulfide (S²⁻)

 \rightarrow

 \rightarrow

pyrrhotite in aggregates

Mechanisms of Deterioration

Chemical composition of KaminTM 35 used as a carrier for sulfide-sulfate-mixtures

Constituent	SiO ₂	Al_2O_3	Fe ₂ O ₃	CaO	K ₂ O	TiO ₂	P ₂ O ₅	S
Concentration (% by weight)	62.1	26.4	0.44	0.08	0.06	0.69	0.59	0.03

Concentrations of FeS and CuSO4*1/2H2O in prepared calibration samples for measurement by WD-XRF

	CaSO ₄	mix	FeS								
m(FeS) [g]	0	0.45	0.9	1.35	1.8	2.25	2.7	3.15	3.6	4.05	4.5
m(CaSO ₄) [g]	4.5	4.05	3.6	3.15	2.7	2.25	1.8	1.35	0.9	0.45	0
m(kaolin) [g]	[] 4.5 g for each sample										
Total S(S ²⁻)/Total S	0	0.144	0.275	0.394	0.503	0.603	0.695	0.779	0.858	0.932	1
Total S(S ⁶⁺)/Total S	1	0.856	0.725	0.606	0.497	0.397	0.305	0.221	0.142	0.068	0

(Wavelength Dispersive X-ray Fluorescence)

WD-XRF allows us to distinguish between **sulfate (gypsum)** and **sulfide (pyrrhotite)**.

Total Sulfur Content?

Validation Total Sulfur Content - WD-XRF

(Wavelength Dispersive X-ray Fluorescence)

- Elemental Analyzer
- Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray spectroscopy (EDX)
- X-Ray Diffraction (XRD)
- **Ion Chromatography (IC)**
- **D PETROGRAPHIC ANALYSIS**
- **D THERMOMAGNETIC ANALYSIS**

INVESTIGATION METHODS – SEM + EDX

Teno field emission SEM + EDX

Scanning Electron Microscopy (SEM) Energy Dispersive X-ray spectroscopy (EDX)

Microstructure (SEM)

Elementary Composition (EDX)

Deterioration of Concrete

INVESTIGATION METHODS - XRD

Bruker D2 phaser Xray diffractometer

X-Ray Diffraction (XRD)

Deterioration of Concrete

INVESTIGATION METHODS – IC

DIONEX ICS-1100 ion chromatography

Release of sulfate ions – accelerated oxidation

Ion Chromatography (IC)

PETROGRAPHIC ANALYSIS

Pyrrhotite Inclusion in Coarse Aggregate (photo courtesy of Nick Scaglione)

Thin Sections of Coarse Aggregate Under the View of Plane Polarized Light (B: Biotite, P: Pyrrhotite, G: Garnet) (photo courtesy of Nick Scaglione)

INVESTIGATION METHODS – THERMOMAGNETIC ANALYSIS

Gneiss and Gurley, 2018 (Trinity College, CT)

Fig. 3: Drop in magnetic susceptibility Δχ between 310° C and 325°C for a series of cement-pyrrhotite mixtures. Δχ can be considered a semi-quantitative measure of Pyrrhotite content if the investigated pyrrhotites have similar chemical compositions and crystallographic superstructures.

Long-term Goal:

- Predict deterioration of concrete and structural integrity of basement walls and other structures
- Determine acceptable pyrrhotite limits
- Develop prevention methods

Challenges:

- Highly complex mechanism and various interconnecting parameters
- Laboratory testing at small and large scale at various conditions over longer time periods is needed
- Funding for data collection, testing, forensic analysis and fundamental research is needed

(e.g. research on pyrrhotite in the amount of **\$5** million over **4** years just recently funded by the National Research Council Canada, the Quebec government and University Laval, Canada)

Thank you.

Questions?

Special Thanks to UConn, SOE Yusniel Cruz-Hernandez and Douglas Hendrix

Oxidation of Pyrrhotite

Specimen Preparation

400 kip load

frame

compressive strength reduction of concrete foundation wall **27% to 100%**

INVESTIGATION METHODS – SEM + EDX

Teno field emission SEM + EDX

Scanning Electron Microscopy (SEM) Energy Dispersive X-ray spectroscopy (EDX)

Microstructure (SEM)

Elementary Composition (EDX)

Deterioration of Concrete

INVESTIGATION METHODS - XRD

Bruker D2 phaser Xray diffractometer

X-Ray Diffraction (XRD)

Deterioration of Concrete

06/19/2019

Slide 24/9

INVESTIGATION METHODS - XRF

INNOV-X Systems XRF analyzer

Promising Method to detect elemental Sulfur – part of pyrrhotite

Elemental Composition – quarry aggregate

	With brown discoloring	Reference sample				
	Average	Average				
S	2.5%	-				
Fe	6.3%	0.001%				

X-Ray Fluorescence (XRF)

INVESTIGATION METHODS – IC

DIONEX ICS-1100 ion chromatography

Release of sulfate ions – accelerated oxidation

Ion Chromatography (IC)

PETROGRAPHIC ANALYSIS

Pyrrhotite Inclusion in Coarse Aggregate (photo courtesy of Nick Scaglione)

Thin Sections of Coarse Aggregate Under the View of Plane Polarized Light (B: Biotite, P: Pyrrhotite, G: Garnet) (photo courtesy of Nick Scaglione)

INVESTIGATION METHODS – THERMOMAGNETIC ANALYSIS

Gneiss and Gurley, 2018 (Trinity College, CT)

Fig. 3: Drop in magnetic susceptibility Δχ between 310° C and 325°C for a series of cement-pyrrhotite mixtures. Δχ can be considered a semi-quantitative measure of Pyrrhotite content if the investigated pyrrhotites have similar chemical compositions and crystallographic superstructures.